metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.117D10, C10.1062+ 1+4, (C4×D4)⋊25D5, (D4×C20)⋊27C2, (C4×D20)⋊34C2, C20⋊7D4⋊20C2, C20⋊2D4⋊11C2, C4⋊C4.320D10, C20⋊2Q8⋊26C2, (C2×D4).224D10, C4.66(C4○D20), C20.114(C4○D4), (C2×C20).165C23, (C4×C20).161C22, (C2×C10).107C24, C22⋊C4.119D10, (C22×C4).215D10, C2.19(D4⋊8D10), C4.118(D4⋊2D5), Dic5.5D4⋊11C2, (D4×C10).266C22, (C2×D20).222C22, C23.21D10⋊9C2, C4⋊Dic5.302C22, (C22×D5).41C23, C22.132(C23×D5), C23.104(C22×D5), D10⋊C4.55C22, (C22×C20).111C22, (C22×C10).177C23, C5⋊2(C22.49C24), (C2×Dic10).30C22, (C4×Dic5).226C22, (C2×Dic5).219C23, C23.D5.108C22, C4⋊C4⋊7D5⋊16C2, C2.56(C2×C4○D20), C10.49(C2×C4○D4), (C2×C4×D5).77C22, C2.24(C2×D4⋊2D5), (C5×C4⋊C4).335C22, (C2×C4).163(C22×D5), (C2×C5⋊D4).20C22, (C5×C22⋊C4).130C22, SmallGroup(320,1235)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C5 — C10 — C2×C10 — C22×D5 — C2×C5⋊D4 — C20⋊2D4 — C42.117D10 |
Generators and relations for C42.117D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2b2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=a2b2c-1 >
Subgroups: 838 in 236 conjugacy classes, 99 normal (29 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×D4, C4⋊D4, C4.4D4, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C22.49C24, C4×Dic5, C4⋊Dic5, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C2×C5⋊D4, C22×C20, D4×C10, C20⋊2Q8, C4×D20, Dic5.5D4, C4⋊C4⋊7D5, C23.21D10, C20⋊7D4, C20⋊2D4, D4×C20, C42.117D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, C22×D5, C22.49C24, C4○D20, D4⋊2D5, C23×D5, C2×C4○D20, C2×D4⋊2D5, D4⋊8D10, C42.117D10
(1 120 95 37)(2 38 96 111)(3 112 97 39)(4 40 98 113)(5 114 99 31)(6 32 100 115)(7 116 91 33)(8 34 92 117)(9 118 93 35)(10 36 94 119)(11 109 41 26)(12 27 42 110)(13 101 43 28)(14 29 44 102)(15 103 45 30)(16 21 46 104)(17 105 47 22)(18 23 48 106)(19 107 49 24)(20 25 50 108)(51 76 124 149)(52 150 125 77)(53 78 126 141)(54 142 127 79)(55 80 128 143)(56 144 129 71)(57 72 130 145)(58 146 121 73)(59 74 122 147)(60 148 123 75)(61 82 134 159)(62 160 135 83)(63 84 136 151)(64 152 137 85)(65 86 138 153)(66 154 139 87)(67 88 140 155)(68 156 131 89)(69 90 132 157)(70 158 133 81)
(1 70 60 22)(2 61 51 23)(3 62 52 24)(4 63 53 25)(5 64 54 26)(6 65 55 27)(7 66 56 28)(8 67 57 29)(9 68 58 30)(10 69 59 21)(11 114 152 142)(12 115 153 143)(13 116 154 144)(14 117 155 145)(15 118 156 146)(16 119 157 147)(17 120 158 148)(18 111 159 149)(19 112 160 150)(20 113 151 141)(31 85 79 41)(32 86 80 42)(33 87 71 43)(34 88 72 44)(35 89 73 45)(36 90 74 46)(37 81 75 47)(38 82 76 48)(39 83 77 49)(40 84 78 50)(91 139 129 101)(92 140 130 102)(93 131 121 103)(94 132 122 104)(95 133 123 105)(96 134 124 106)(97 135 125 107)(98 136 126 108)(99 137 127 109)(100 138 128 110)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 123 122)(2 121 124 9)(3 8 125 130)(4 129 126 7)(5 6 127 128)(11 153 85 42)(12 41 86 152)(13 151 87 50)(14 49 88 160)(15 159 89 48)(16 47 90 158)(17 157 81 46)(18 45 82 156)(19 155 83 44)(20 43 84 154)(21 105 132 70)(22 69 133 104)(23 103 134 68)(24 67 135 102)(25 101 136 66)(26 65 137 110)(27 109 138 64)(28 63 139 108)(29 107 140 62)(30 61 131 106)(31 32 142 143)(33 40 144 141)(34 150 145 39)(35 38 146 149)(36 148 147 37)(51 93 96 58)(52 57 97 92)(53 91 98 56)(54 55 99 100)(59 95 94 60)(71 78 116 113)(72 112 117 77)(73 76 118 111)(74 120 119 75)(79 80 114 115)
G:=sub<Sym(160)| (1,120,95,37)(2,38,96,111)(3,112,97,39)(4,40,98,113)(5,114,99,31)(6,32,100,115)(7,116,91,33)(8,34,92,117)(9,118,93,35)(10,36,94,119)(11,109,41,26)(12,27,42,110)(13,101,43,28)(14,29,44,102)(15,103,45,30)(16,21,46,104)(17,105,47,22)(18,23,48,106)(19,107,49,24)(20,25,50,108)(51,76,124,149)(52,150,125,77)(53,78,126,141)(54,142,127,79)(55,80,128,143)(56,144,129,71)(57,72,130,145)(58,146,121,73)(59,74,122,147)(60,148,123,75)(61,82,134,159)(62,160,135,83)(63,84,136,151)(64,152,137,85)(65,86,138,153)(66,154,139,87)(67,88,140,155)(68,156,131,89)(69,90,132,157)(70,158,133,81), (1,70,60,22)(2,61,51,23)(3,62,52,24)(4,63,53,25)(5,64,54,26)(6,65,55,27)(7,66,56,28)(8,67,57,29)(9,68,58,30)(10,69,59,21)(11,114,152,142)(12,115,153,143)(13,116,154,144)(14,117,155,145)(15,118,156,146)(16,119,157,147)(17,120,158,148)(18,111,159,149)(19,112,160,150)(20,113,151,141)(31,85,79,41)(32,86,80,42)(33,87,71,43)(34,88,72,44)(35,89,73,45)(36,90,74,46)(37,81,75,47)(38,82,76,48)(39,83,77,49)(40,84,78,50)(91,139,129,101)(92,140,130,102)(93,131,121,103)(94,132,122,104)(95,133,123,105)(96,134,124,106)(97,135,125,107)(98,136,126,108)(99,137,127,109)(100,138,128,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,105,132,70)(22,69,133,104)(23,103,134,68)(24,67,135,102)(25,101,136,66)(26,65,137,110)(27,109,138,64)(28,63,139,108)(29,107,140,62)(30,61,131,106)(31,32,142,143)(33,40,144,141)(34,150,145,39)(35,38,146,149)(36,148,147,37)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,78,116,113)(72,112,117,77)(73,76,118,111)(74,120,119,75)(79,80,114,115)>;
G:=Group( (1,120,95,37)(2,38,96,111)(3,112,97,39)(4,40,98,113)(5,114,99,31)(6,32,100,115)(7,116,91,33)(8,34,92,117)(9,118,93,35)(10,36,94,119)(11,109,41,26)(12,27,42,110)(13,101,43,28)(14,29,44,102)(15,103,45,30)(16,21,46,104)(17,105,47,22)(18,23,48,106)(19,107,49,24)(20,25,50,108)(51,76,124,149)(52,150,125,77)(53,78,126,141)(54,142,127,79)(55,80,128,143)(56,144,129,71)(57,72,130,145)(58,146,121,73)(59,74,122,147)(60,148,123,75)(61,82,134,159)(62,160,135,83)(63,84,136,151)(64,152,137,85)(65,86,138,153)(66,154,139,87)(67,88,140,155)(68,156,131,89)(69,90,132,157)(70,158,133,81), (1,70,60,22)(2,61,51,23)(3,62,52,24)(4,63,53,25)(5,64,54,26)(6,65,55,27)(7,66,56,28)(8,67,57,29)(9,68,58,30)(10,69,59,21)(11,114,152,142)(12,115,153,143)(13,116,154,144)(14,117,155,145)(15,118,156,146)(16,119,157,147)(17,120,158,148)(18,111,159,149)(19,112,160,150)(20,113,151,141)(31,85,79,41)(32,86,80,42)(33,87,71,43)(34,88,72,44)(35,89,73,45)(36,90,74,46)(37,81,75,47)(38,82,76,48)(39,83,77,49)(40,84,78,50)(91,139,129,101)(92,140,130,102)(93,131,121,103)(94,132,122,104)(95,133,123,105)(96,134,124,106)(97,135,125,107)(98,136,126,108)(99,137,127,109)(100,138,128,110), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,123,122)(2,121,124,9)(3,8,125,130)(4,129,126,7)(5,6,127,128)(11,153,85,42)(12,41,86,152)(13,151,87,50)(14,49,88,160)(15,159,89,48)(16,47,90,158)(17,157,81,46)(18,45,82,156)(19,155,83,44)(20,43,84,154)(21,105,132,70)(22,69,133,104)(23,103,134,68)(24,67,135,102)(25,101,136,66)(26,65,137,110)(27,109,138,64)(28,63,139,108)(29,107,140,62)(30,61,131,106)(31,32,142,143)(33,40,144,141)(34,150,145,39)(35,38,146,149)(36,148,147,37)(51,93,96,58)(52,57,97,92)(53,91,98,56)(54,55,99,100)(59,95,94,60)(71,78,116,113)(72,112,117,77)(73,76,118,111)(74,120,119,75)(79,80,114,115) );
G=PermutationGroup([[(1,120,95,37),(2,38,96,111),(3,112,97,39),(4,40,98,113),(5,114,99,31),(6,32,100,115),(7,116,91,33),(8,34,92,117),(9,118,93,35),(10,36,94,119),(11,109,41,26),(12,27,42,110),(13,101,43,28),(14,29,44,102),(15,103,45,30),(16,21,46,104),(17,105,47,22),(18,23,48,106),(19,107,49,24),(20,25,50,108),(51,76,124,149),(52,150,125,77),(53,78,126,141),(54,142,127,79),(55,80,128,143),(56,144,129,71),(57,72,130,145),(58,146,121,73),(59,74,122,147),(60,148,123,75),(61,82,134,159),(62,160,135,83),(63,84,136,151),(64,152,137,85),(65,86,138,153),(66,154,139,87),(67,88,140,155),(68,156,131,89),(69,90,132,157),(70,158,133,81)], [(1,70,60,22),(2,61,51,23),(3,62,52,24),(4,63,53,25),(5,64,54,26),(6,65,55,27),(7,66,56,28),(8,67,57,29),(9,68,58,30),(10,69,59,21),(11,114,152,142),(12,115,153,143),(13,116,154,144),(14,117,155,145),(15,118,156,146),(16,119,157,147),(17,120,158,148),(18,111,159,149),(19,112,160,150),(20,113,151,141),(31,85,79,41),(32,86,80,42),(33,87,71,43),(34,88,72,44),(35,89,73,45),(36,90,74,46),(37,81,75,47),(38,82,76,48),(39,83,77,49),(40,84,78,50),(91,139,129,101),(92,140,130,102),(93,131,121,103),(94,132,122,104),(95,133,123,105),(96,134,124,106),(97,135,125,107),(98,136,126,108),(99,137,127,109),(100,138,128,110)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,123,122),(2,121,124,9),(3,8,125,130),(4,129,126,7),(5,6,127,128),(11,153,85,42),(12,41,86,152),(13,151,87,50),(14,49,88,160),(15,159,89,48),(16,47,90,158),(17,157,81,46),(18,45,82,156),(19,155,83,44),(20,43,84,154),(21,105,132,70),(22,69,133,104),(23,103,134,68),(24,67,135,102),(25,101,136,66),(26,65,137,110),(27,109,138,64),(28,63,139,108),(29,107,140,62),(30,61,131,106),(31,32,142,143),(33,40,144,141),(34,150,145,39),(35,38,146,149),(36,148,147,37),(51,93,96,58),(52,57,97,92),(53,91,98,56),(54,55,99,100),(59,95,94,60),(71,78,116,113),(72,112,117,77),(73,76,118,111),(74,120,119,75),(79,80,114,115)]])
65 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 20 | 2 | ··· | 2 | 4 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
65 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D10 | D10 | C4○D20 | 2+ 1+4 | D4⋊2D5 | D4⋊8D10 |
| kernel | C42.117D10 | C20⋊2Q8 | C4×D20 | Dic5.5D4 | C4⋊C4⋊7D5 | C23.21D10 | C20⋊7D4 | C20⋊2D4 | D4×C20 | C4×D4 | C20 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | C4 | C10 | C4 | C2 |
| # reps | 1 | 1 | 1 | 4 | 2 | 2 | 2 | 2 | 1 | 2 | 8 | 2 | 4 | 2 | 4 | 2 | 16 | 1 | 4 | 4 |
Matrix representation of C42.117D10 ►in GL4(𝔽41) generated by
| 40 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 32 | 0 |
| 0 | 0 | 29 | 9 |
| 39 | 28 | 0 | 0 |
| 13 | 2 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 20 | 21 | 0 | 0 |
| 20 | 23 | 0 | 0 |
| 0 | 0 | 15 | 39 |
| 0 | 0 | 30 | 26 |
| 20 | 21 | 0 | 0 |
| 18 | 21 | 0 | 0 |
| 0 | 0 | 26 | 2 |
| 0 | 0 | 10 | 15 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,32,29,0,0,0,9],[39,13,0,0,28,2,0,0,0,0,1,0,0,0,0,1],[20,20,0,0,21,23,0,0,0,0,15,30,0,0,39,26],[20,18,0,0,21,21,0,0,0,0,26,10,0,0,2,15] >;
C42.117D10 in GAP, Magma, Sage, TeX
C_4^2._{117}D_{10} % in TeX
G:=Group("C4^2.117D10"); // GroupNames label
G:=SmallGroup(320,1235);
// by ID
G=gap.SmallGroup(320,1235);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,758,219,1571,192,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=a^2*b^2*c^-1>;
// generators/relations